Prof. Matthieu Bloch
Tuesday, November 28, 2023
A \((n,M_n)\) code \(\calC\) for a wiretap channel consists of an encoding function \(f_n:\{1,\cdots,M_n\}\to\calX^n\) and a decoding function \(g_n:\calY^n\to\{1,\cdots,M_n\}\)
For a physically degraded discrete memoryless channel characterized by \(P_{Y|X}\) and \(P_{Z|X}\), \[C_{\textsf{s}} = \max_{P_X}\left(\mathbb{I}(X;Y)-\mathbb{I}(X;Z)\right) = \max_{P_X}\mathbb{I}(X;Y|Z)\]
A \((n,K_n)\) code \(\calC\) for secret-key generation consists of an encoding function \(f_n:\calX^n\to \{1,\cdots,K_n\}\times\calF\) and a decoding function \(g_n:\calY^n\times\calF\to\{1,\cdots,K_n\}\)
For a physically degraded discrete memoryless channel characterized by \(P_{Y|X}\) and \(P_{Z|X}\), \[C_{\textsf{sk}} = \mathbb{H}(X|Z)-\mathbb{H}(X|Y) = \mathbb{I}(X;Y|Z)\]
A \((n,M_n)\) code \(\calC\) for a wiretap channel consists of an encoding function \(f_n:\{1,\cdots,M_n\}\to\calX^n\) and a decoding function \(g_n:\calY^n\to\{1,\cdots,M_n\}\)